Memory of the Great Patriotic War in Comments to Regional Media: An Experience of Combining Machine Learning and Discourse Analysis
DOI:
https://doi.org/10.14515/monitoring.2025.2.2552Keywords:
Victory Day, memory of the Great Patriotic War, historical memory, critical discourse analysis, machine learningAbstract
This article is devoted to the study of the comments to regional media of Kaliningrad, Tula, and Tomsk regions about commemorations of the Great Patriotic War of 1941―1945 in light of a combination of Machine Learning (ML) methods and critical discourse analysis (CDA) methodology. The sources used were the comments of regional media users in the period from 2015 to 2021, dedicated to commemorations of June 22 and May 9, the “Immortal Regiment” action, as well as family memory of the war events. The analysis of a sample set of the comments using ML methods showed that in three selected Russian regions, regardless of anniversaries, the number of positive comments is decreasing, and the number of negative comments is growing. The Tomsk region showed the highest percentage of critical comments regarding all studied commemorations. The study made it possible to reveal the internal heterogeneity of this trend, showing the relationship between the use of images of the war and the assessment of the current socio-political situation. The analysis showed that the use of memory of the events of the Great Patriotic War as a variant of civil religion in modern Russia faces the sacralization of individual heroes and images of family memory of the war, which are increasingly contrasted with the official narratives about the Great Patriotic War. At the same time, the study showed that criticism of commemorative events is more related to current regional socio-economic problems and is extremely emotional and situational. This conclusion made it possible to reveal in more detail and substantiate the thesis about the presence of tendencies of polarization and fragmentation of mass historical consciousness in the regional Internet space. Based on the examples studied, the principles for combining ML methods and CDA were formulated.
References
Аникин Д.А., Беклямишев В.О. Образы полководцев в гражданской религии постсоветской России: история канонизации и особенности теологического дискурса // История. 2024. Т. 15. № 4. https://doi.org/10.18254/S207987840031109-8.
Anikin D., Bekliamishev V. (2024) Images of Generals in the Civil Religion of Post-Soviet Russia: The History of Canonization and Features of Theological Discourse. History. Vol. 15. No. 4. https://doi.org/10.18254/S207987840031109-8. (In Russ.)
Ассман Я. Культурная память: письмо, память о прошлом и политическая идентичность в высоких культурах древности. М.: Языки славянской культуры, 2004.
Assman Y. (2004) Cultural Memory: Writing, Memory of the Past and Political Identity in the High Cultures of Antiquity. Moscow: Languages of Slavic Culture. (In Russ.)
Воробьева О.В., Николаи Ф.В. История эмоций и nationalism studies: когнитивный поворот в современной историографии // История. 2021. Т. 12. № 8. https://doi.org/10.18254/S207987840016459-3.
Vorobieva O.V., Nicolai F.V. (2021) The History of Emotions and Nationalism Studies: A Cognitive Turn in Contemporary Historiography. History. Vol. 12. No. 8. https://doi.org/10.18254/S207987840016459-3. (In Russ.)
Головашина О.В., Линченко А.А., Аникин Д.А. Память о Великой Отечественной войне: День Победы в историческом сознании россиян // Социологические исследования. 2017. № 3. С. 123―133.
Golovashina O.V., Linchenko A.A., Anikin D.A. (2017) Memory of the Great Patriotic War: Victory Day in the Historical Consciousness of Russians. Sociological Studies. No. 3. P. 123―133. (In Russ.)
Зевелева О. И. Биографический метод и дискурс-анализ: перспективы сочетания // Социология: методология, методы, математическое моделирование (Социология:4М). 2014. № 39. С. 7―39.
Zeveleva O. I. (2014) Biographical Method and Critical Discourse Analysis: Prospects for Combination. Sociology: Methodology, Methods, Mathematical Modeling (Sociology: 4M). No. 39. P. 7―39. (In Russ.)
Колосова Е.А. Динамика сохранения и актуализации памяти о Великой Отечественной войне у современных детей и подростков // Вестник РГГУ. Серия «Философия. Социология. Искусствоведение». 2020. № 2. С. 69-80.
Kolosova E.A. (2020) The Dynamics in the Remembrance Work and the Memory Actualization of the Great Patriotic War Among Modern Children and Adolescents. RSUH/RGGU Bulletin. Series Philosophy. Social Studies. Art Studies. No. 2. P. 69-80. (In Russ.)
Линченко А.А. Память о Великой Отечественной войне 1941―1945 гг. в региональном Интернет-пространстве: опыт дискурс-анализа // Социодинамика. 2022. № 5. С.38―49. https://doi.org/10.25136/2409-7144.2022.5.37965.
Linchenko A.A. (2022) Memory of the Great Patriotic War of 1941―1945 in the Regional Internet Space: An Experience of Discourse Analysis. Sociodynamics. No. 5. P. 38―49. https://doi.org/10.25136/2409-7144.2022.5.37965. (In Russ.)
Морев М.В. «Крымский консенсус»: значение и перспективы // Ученые записки Крымского федерального университета имени В. И. Вернадского. Социология. Педагогика. Психология. 2018. Т. 4. № 2. С. 150-113.
Morev M.V. (2018) “Crimean Consensus”: Significance and Prospects. Scientific Notes of V.I. Vernadsky Crimean Federal University. Sociology. Pedagogy. Psychology. Vol. 4. No. 2. P. 150-113. (In Russ.)
Переверзев Е. В. Критический дискурс-анализ: от теории к практике // Язык. Текст. Дискурс. 2009. № 7. С. 105―116.
Pereverzev E. V. (2009) Critical Discourse Analysis: From Theory to Practice. Language. Text. Discource. No. 7. P. 105―116. (In Russ.)
Политика памяти в современной России и странах Восточной Европы. Акторы, институты, нарративы: коллективная монография / под ред. А.И. Миллера, Д.В. Ефременко. СПб.: Издательство Европейского университета в Санкт-Петербурге, 2020.
Miller A.I., Efremenko D.V. (eds.) (2020) The Politics of Memory in Modern Russia and the Countries of Eastern Europe. Actors, Institutions, Narratives. Saint Petersburg: EUSP Press. (In Russ.)
Символические аспекты политики памяти в современной России и Восточной Европе: сборник статей / под ред. В.В. Лапина, А.И. Миллера. СПб.: Издательство Европейского университета в Санкт-Петербурге, 2021.
Lapin V.V., Miller A.I. (eds.) (2021) Symbolic Aspects of the Politics of Memory in Modern Russia and Eastern Europe. Saint Petersburg: EUSP Press. (In Russ.)
Alekseev A., Nikolenko S. (2017) User Profiling in Text-Based Recommender Systems Based on Distributed Word Representations. In: Ignatov D. et al. (eds.) Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science. Vol 661. Cham: Springer. P. 196―207. https://doi.org/10.1007/978-3-319-52920-2_19.
Aranda A.M. Sele K., Etchanchu H., Guyt J.Y., Vaara E. (2021) From Big Data to Rich Theory: Integrating Critical Discourse Analysis with Structural Topic Modeling. European Management Review. Vol. 18. No. 3. P. 197―214. https://doi.org/10.1111/emre.12452.
Bellah R. (1967) Civil Religion in America. Daedalus. Vol. 96. No. 1. P. 1―21.
Filatova O., Volkovskii D., Begen P. (2020) Usage of Artificial Intelligence in Internet Discourse Analysis: from Manual Mechanisms of Data Processing to Electronic Ones. In: Proceedings of the 22nd Conference on Scientific Services & Internet (SSI-2020). Novorossiysk-Abrau (online), Russia, September 21―25, 2020. Novorossisk-Abrau: CEUR. P. 352―360.
Jäger S. (2001) Discourse and Knowledge: Theoretical and Methodological Aspects of a Critical Discourse and Dispositive Analysis. In: Wodak R., Meyer M. (eds.) Methods of Critical Discourse Analysis. London: SAGE. P. 32―63.
Loukachevitch N. (2021) Automatic Sentiment Analysis of Texts: The Case of Russian. In: Gritsenko D., Wijermars M., Kopotev M. (eds.) The Palgrave Handbook of Digital Russia Studies. Cham: Palgrave Macmillan. P. 501―516.
Malykh V., Alekseev A., Tutubalina E., Shenbin I., Nikolenko S. (2019) Wear the Right Head: Comparing Strategies for Encoding Sentences for Aspect Extraction. In: van der Aalst W. et al. (eds.) Analysis of Images, Social Networks and Texts. AIST 2019. Lecture Notes in Computer Science. Vol. 1832. Cham: Springer. P. 166―178. https://doi.org/10.1007/978-3-030-37334-4_15.
O’Neill L., Anantharama N., Buntine W., Angus S.D. (2021) Quantitative Discourse Analysis at Scale — AI, NLP and the Transformer Revolution. SoDa Laboratories Working Paper Series. No.2021―12. Melbourne: Monash Business School. URL:http://soda-wps.s3-website-ap-southeast-2.amazonaws.com/RePEc/ajr/sodwps/2021-12.pdf (дата обращения: 15.04.2025).
Rodina J., Bakshandaeva D., Fomin V., Kutuzov A., Touileb S., Velldal E. (2019) Measuring Diachronic Evolution of Evaluative Adjectives with Word Embeddings: The Case for English, Norwegian, and Russian. In: N. Tahmasebi, L. Borin, A. Jatowt, Y. Xu (eds.) Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change. Florence: Association for Computational Linguistics. P. 202―209.
Smetanin S. (2020) The Applications of Sentiment Analysis for Russian Language Texts: Current Challenges and Future Perspectives. IEEE Access. Vol. 8. P. 110693―110719.
Smetanin S., Komarov M. (2021) Deep Transfer Learning Baselines for Sentiment Analysis in Russian. Information Processing and Management. Vol. 58. No. 3. Art. 102484. https://doi.org/10.1016/j.ipm.2020.102484.
Smetanin S., Komarov M. (2019) Sentiment Analysis of Product Reviews in Russian Using Convolutional Neural Networks. In: K. Kramer (ed.) Proceedings ― 21st IEEE Conference on Business Informatics, CBI 2019. Moscow: The Institute of Electrical and Electronics Engineers. P. 482―486.
Sysoev A., Linchenko A., Kalitvin V., Anikin D., Golovashina O. (2021) Studying Comments on Russian Patriotic Actions: Sentiment Analysis Using NLP Techniques and ML Approaches. In: A. Sysoev (ed.) Proceedings-2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA: Lipetsk: LSTU. P. 494—499.
Vīksna R., Jēkabsons G. (2018) Sentiment Analysis in Latvian and Russian: A Survey. Applied Computer Systems. Vol. 23. No. 1. P. 45―51. https://doi.org/10.2478/acss-2018-0006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Monitoring of Public Opinion: Economic and Social Changes

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.